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This paper describes a technique for obstacle detection, based on the expansion

of the image-plane projection of a textured object, as its distance from the sensor

decreases. Information is conveyed by vectors whose components represent first-order

temporal and spatial derivatives of the image intensity, which are related to the time to

collision through the local divergence. Such vectors may be characterized as patterns

corresponding to "safe" or "dangerous" situations. We show that the essential informa-

tion is conveyed by single-bit vector components, representing the signs of the relevant

derivatives. We use two recently developed, high capacity classifiers, employing neural

learning techniques, to recognize the imminence of collision from such patterns.
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1 Introduction

Obstacle detection is an area of considerable interest in such applications as rotorcraft nap-

of-the-earth navigation and spacecraft landing. There are mainly two possible approaches

to the associated vision problem, one based on the optical flow resulting from the motion

of a single image sensor, the other based on stationary stereo. Both approaches have been

taken in previous works on passive ranging (e.g., [1, 2, 3, 4]). In this paper we take the single
sensor, or monocular vision approach.

The motion of an imaging sensor causes each point of the sceae to dcscribe a time

trajectory in the image plane. The trajectories of all image points constitute the optical

flow. An imaging sensor, such as a TV camera or a Forward-Looking Infra-Red (FLIR), is

typically used as the source of optical flow data. Similarly to other passive-ranging methods,

we assume that the scene and its illumination sources are temporally stationary (see [5]).

The optical flow at any given point in the image plane may consist of three kinds

of motion: lateral translation, expansion (or divergence), and rotation (or curl). When

considering the vicinity of any given point, its time evolution can be described approximately

by an affine transformation which, in the most general case, is defined by six parameters:

four belonging to the 2 x 2 multiplying matrix, and two belonging to the vector of lateral

translation. Most depth-estimation methods, such as those described in [6, 7], make use of

the lateral motion alone. Two basic limitations are implicit in these methods. They perform

poorly in the image plane close to the focus of expansion, and they can only use a relatively

short distance between frames. As shown in earlier work [8], the depth estimation error is
inversely proportional to this distance.

The idea of using divergence (or expansion) as a source of depth information is not

new. The works of Longuet-Higgins and Prazdny [9], Prazdny [10, 11], Koenderink [12],

Koenderink and van Doorn [13, 14], and Nelson and Aloimonos [15] elaborate extensively

on this subject. An extension of the local divergence approach was recently reported in [16],

where a diffusion process is used to roughly delineate objects and "paint" them according

to the imminence of collision. This technique is especially useful for objects that have well-
defined contours.

In this work we do not try to estimate the numerical depth value, but, rather, we try

to classify an obstacle as being "safe" or "dangerous", using a pattern-recognition approach.

We rely on the objects being textured, and extract information from local expansion, as

illustrated by Figure 1. We look for patterns associated with high or low values of the

local divergence. Since the latter is calculable from the image-plane temporal and spatial

derivatives, we use those as the components of the pattern vector. Reducing these compo-

nents to their sign function, we obtain binary pattern vectors which prove to be sufficient

for our obstacle detection purposes. We employ two recently developed techniques, reported



Figure 1: Texture expansion

in [17] and [18], for classifyingthe pattern vectors as representingsafeor dangeroussitua-
tions. Thesetechniquesarebasedonexpandingthe patterns into high dimensionalspacefor
high storagecapacity, and applying learningtechniques,previously developedin the neural

networksliterature, to the resulting sparserepresentations.The first technique, employing

Rosenblatt's learning rule, offers relatively accurate results at the cost of relatively slow

computation, while the other, employing the so-called Hebbian learning rule, which is less

accurate, is considerably faster.

2 The divergence equations

In this section we present the mathematical background necessary to understand the partic-

ular choice of variables for the pattern vectors used by our recognition method.

Denoting by x and Y the cartesian coordinates of points in the image plane, the diver-

gence of the image-plane velocity vector (also referred to as the optical flow), v = [v= v_] T,

at some given point [x y] is known to satisfy [16]

Ovx Ov_ _ 2/rVv = + 0y (1)

where 27 = [o _] and r is the time to collision. The velocity divergence, then, provides
what we are looking for.

Let us now examine what measurements and relationships are available for calculating

the divergence from its definition. The brightness constancy equation ([5]) is

OI dx OI dy OI

O---xd----t+ Oy dt - Ot ' (2)

where I denotes brightness, or gray level, and t denotes time. In vector form

vTvI _ OI
0t (3)



where VI = [_ 0_]" Equation (3) does not have a unique solution for the velocity vector;

it is satisfied by any vector having a component v/parallel to VI. This is the "aperture

problem". Solving for this component, we have

V I --

where I" t denotes the length of a vector.

01/0t
] VI ]2 VI (4)

Since the direction of the local edge is generally unrelated to the local velocity vector, we

cannot get the latter from (4). One possible way to circumvent both the aperture problem

and the random nature of the edges is to apply (4) at least twice to close-by local edges,

assuming that they experience the same v but have different orientations. Rewriting (4)

twice for two such edges yields two equations with two unknowns -- the two components

of v itself. Taking one step further, the same equation can be applied many (say n) times

and the two velocity components for some image point can be obtained from a least-squares
solution of this equation set, which may be written in matrix form as

where

A[v_: vy]T= B (5)

The least-squares solution of (5) is

and B= _ - (6)

[v_ vy] T = (A TA)-' AB (7)

Equation (7) has a unique solution if and only if the rank of A is 2, which means that at

least two edges are oriented differently. The practical problems with such an approach are

that it depends on the successful association of all the n points with a single object, and

that the derivatives used in the solution are generally noisy. To suppress noise, one would

like to use a large number of equations, but this entails identifying a large image area as

belonging to the same object through some form of image segmentation. Since methods of

image segmentation have their own pitfalls, a practical approach would be to assume that

all points within a window of a certain size experience the same v.

In this work we suggest an approach which, rather than solving equations, regards the

relevant information as a pattern to be associated with either small or large divergence
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values. The question is, what kind of information should constitute a pattern. Suppose that

v coincides with vi. Applying (1) to (4), we have

o(o,,o oi)oroi,o oI)Vvl- Ox IVII20z -_ _i-V-ip_ (8)

which indicates that the relevant information for calculating divergence is captured by the

first and second spatial and temporal derivatives of the image light intensity (represented by
gray levels), that is by 01 0I 01 021 021 021 021 02_

_, o-_, 0-7, g-fi_2,oy2, oxoy, o::ot, oygT" Notice that these derivatives are

required at the image point under consideration. Alternatively, it can be seen that only first

spatial and temporal derivatives of I are required in the least squares solution represented

by (7). However, these derivatives are required at several points in the neighborhood of the
image point.

Guided by the latter observation, we chose to use the three first derivatives at n = 13

points of a grid, centered at the desired image point, as the components of the pattern vector

on which classification is to be performed. Using noisy derivatives and real-valued pattern

vectors, which do not lend themselves easily to classification, presents a potential difficulty.

In this work we show that, for classification purposes, the real-valued components of the

derivative vectors can be reduced to binary ones, representing the signs of those derivatives.

The input vector to the classification algorithm will consist, then, of 39 binary components.

As we have shown in this section, the direct solution of the divergence equations is quite

involved. Our experience shows that a numerical solution of equations (1) and (7) does not

yield satisfactory results. It is therefore remarkable that the neural classifiers, described

next, were able to produce correct detection results with a high rate of success, using the
same information.

3 The pattern recognition algorithms

We employ two recently proposed classifiers, each offering a certain advantage over the other.

The first, reported in [17], is based on transforming the input data into sparse binary internal

representations, and learning the class assignment of the latter by applying Rosenblatt's rule.

The second, reported in [18], is also based on sparse binary internal representation of the

input data, but the learning rule is Hebbian. The first method, employing discriminatory

storage of only those input vectors which are classified incorrectly, may require many training

epochs. The second, employing indiscriminatory storage of the training input-output pairs,

requires a single passage over the training set. Consequently, the second method is usually

considerably faster than the first, which will, however, produce more accurate results, given

a sufficiently long processing time. These relative advantages of the two techniques apply to

both their hardware and software implementations.
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Figure 2: Classifierstructure.

Both methods have the structure depicted in Fig. 2. A given 39-dimensionalinput
vector u, whose components are +1 or -1, is transformed into a sparse N-dimensional

binary vector z, whose components are 0 or 1, by a layer of N internal cells. The size N of

the internal layer is to be determined. Each internal cell performs the function

1 if (v (i),u) >_txi= 0 if (v li) ,u) < t (9)

where v ti) 6 {+1} '_ is a vector with randomly chosed binary components, (v(i), u) denotes

the inner-product between the two vectors and t is a positive scalar. The resulting vector z

is the internal representation of the input vector u. The input weights of the internal cells

define the centers of spheres of Hamming radius r = 0.5(n - t) in {-t-1} n, so that the cell's

output is 1 when the input falls within the sphere and 0 otherwise. (It should be noted that

the activation radius r is selected first as an integer, then t is obtained as t = n - 2r).

The output function, representing the class assignment of u, is

1 if (w,x) >0Y= 0 if (w,z)<0 (10)

where wj, the j'th element of w, is the weight of the connection between the j'th internal

cell and the output, to be determined by the learning process.

The centers of the spheres represented by the internal cells are chosen randomly. The

spheres should cover the input space with high probability. The minimal number of spheres

that cover the space {+1} n with probability of, at least, 1 - 2 -'n, was derived in [19] as

N _> (1 +Sn(r)e)n2nln2 = (1 + e)n2n[1-h_(P)]+O(l°gn)ln2 (11)



where

is the volumeof asphereof radiusr in {-t-1}n, p = n/r, h2(p) = -p log2(p)-(1-p)log2(1-p),

and O(log n) < clog n for some positive scalar c.

The size of the minimal covering code for n = 39 and for covering probability 0.99 is

plotted in Fig. 3 against the relative activation radius p, in terms of log N. It can be seen

that, for p = 0.3, which was found to be adequate from discretization considerations [18],

we have log N = 0.3755, hence, N = 5600. These are the values that will be used by the

proposed classifiers.

Io8 N

Figure 3: Minimal covering code size for input dimension n = 39.

Rosenblatt learning

Given a training set A of pairs u(0, y(i), i = 1,..., M, where u (i) is an input vector and

y(i) is the correct output for u (i), classification is learnt by applying Rosenblatt's perceptron

learning rule to the corresponding pairs of internal representations and outputs: Start with

wj = 0, j = 1,..., N. Pick a vector u (i) from A and present it as an input. If the output

y agrees with y(0, leave w unchanged and proceed to the next training input. If y = -1

and y(1) = 1, add the internal representation to the weights vector. If y = 1 and y(i) = -1,

subtract the internal representation from the weights vector. This learning rule may he



written as

= ! wj + xjy (i) if y # y(0
wj I wj if y = y(i) (13)

The perceptron convergence theorem [20] implies that this learning process will converge

to a final value of the weights vector w, so that the internal representations of the training

vectors are classified correctly, provided that their assignment is not ambiguous and that such

a vector exists. The existence of such a vector is guaranteed if the internal representations

are linearly independent. It may, however, take many iterations for the algorithm to converge

to final values, which stands in contrast to the storage method described next.

Hebbian storage

The second learning method calculates the connection weights between the internal cells

and the output by the Hebbian rule:

M

wj= _x_Oy(') j= I,...,N (14)
i=1

This is an indiscriminatory correlative storage. Our input-space covering requirement guar-

antees that, given sufficiently many training pairs, the entire input space will be represented

by the external weights, so as to associate every input vector with a class. It is shown in [18]

that the learning capacity of this classifier is 2N, and that it has a substantial generalization

capability. It takes a single passage over the training set (a single training epoch) and is,

consequently, considerably faster than Rosenblatt's learning. On the other hand, the effec-

tive discretization of the input space generated by this method is coarser, and, consequently,

it will often produce less accurate result than the one based on Rosenblatt learning.

4 Simulation

4.1 Creating the pattern vectors

A scenario simulation has been developed to generate the required samples. It consists

of a helicopter flying along a pre-chosen trajectory, including possible maneuvers (that is,

pitch, yaw and roll components of motion), towards a vertical wall normal to the line of

sight. The wall has a textured surface, generated by filtering white Gaussian noise through

a Gaussian-shaped point-spread-function having a 2-pixel spatial correlation width. The

simulation program allows us to control all the parameters of interest, such as the texture

fineness, the dynamic range of the gray-levels and the distance from the focus of expansion.

Figure 4 shows frames 12 and 24 of the simulated textured wall as it is seen in forward flight.



Figure 4: Frames 12 and 24 of simulated textured wall as seen in forward flight



We scanthis wall in order to pick up samplesfor training the classifier. A singlesample
vector is composedof the first spatial and temporal derivatives,oI Ol ol for 13 grid points

Ox' 0_' Or'

centered at a given sample point. The grid arrangement is shown in Figure 5. We note that,

since the first spatial derivatives are given for each of the grid points, information about the

second spatial derivatives at the center point is also implicit in the data. Next, we replace

the real values of the 39 vector components by their signs, representing a negative sign by

-1 and a positive sign by 1. To each sample vector we attribute an output value of -1 if it

corresponds to a safe distance and +1 if it corresponds to an unsafe one.

Figure 5: Grid points at which first derivatives are taken to construct a pattern vector for

the center point

The simulated flights, at a speed of 0.5 m/f (meter/frame), start 150 m from the textured

wall with the camera initially pointing to the wall center. The flights end at a distance of 40

m from the wall. Maneuvering flights exercise a roll of 0.02 rad/f in addition to pitch and

yaw motions at rates of 0.0005 rad/f. In one set of experiments, the close (or dangerous)

zone, was defined as the points whose distances from the wall are between 40 m and 70 m,

while the far (or safe) zone, as the points at distances beween 110 m and 150 m. In another

set, points in the range 40 - 80 m were considered close and those between 90 m and 130 m

were considered far. The second set, having a narrow deadband of only 10 m between the

two zones, is considerably more challenging than the first, having a 40 m deadband.

Each simulation generates 220 images of 128 x 128 pixels, separated by a distance

of 0.5 m normal to the wall. Sampling considerations suggest that image plane points

having an absolute velocity value greater than 1.5 pixel per frame be eliminated. This

effectively confines the sample points to a circle centered at the focus of expansion whose

radius decreases with the distance from the wall.

The nature of the simulation is such that data points corresponding to the far zone are

created before those corresponding to the close one. Since the first classification method

is sensitive to the ordering of the data, we apply a mixing algorithm that rearranges the

data in a random order. The last step in preparing the data is dividing it into two exclusive

sets: the first, consisting of about 70 percent of the sample points, is used for training the

classifiers, while the other is used for testing their performance on new unlearnt data.

We applied the two classification algorithms described in the previous section to each
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of the simulated cases.Allowing 10 training epochsfor the Rosenblatt learning algorithm,
the classifierbasedon this methodwasabout 10 times slowerthan the oneemployingHebb
learning, but it producedmore accurate results in most cases. We shall refer to the two
algorithms asthe slow oneand the fast one,respectively.

4.2 Experimental results

Experiment 1

We first simulated a flight path normal to the wall without maneuvers. The close and the

far zones are separated by a deadband of 40 m. The simulation created 10460 input-output

pairs, of which 3157 were close and 7303 were far. After mixing the data, we selected 7500

pairs for training and 2960 pairs for testing.

The average error was 0.0929 for the fast algorithm and 0.0475 for the slow one.

Experiment 2

Reducing the deadband between the two zones to 10 m in a nonmaneuvering flight, 9985

samples were created, of which 3824 were close and 6161 were far. The training set consisted

of 7000 points and the testing set of 2985 points.

The fast algorithm yielded an average error of 0.1272, and the slow one an average error of
0.0928.

Experiment 3

Simulating a maneuvering flight with a 40 m deadband between the two zones, we produced

3909 samples, of which 1390 were close and 2519 were far. The training set consisted of 3000

points and the test set of 909 points.

The results were 0.1418 for the fast algorithm and 0.0990 for the slow one.

Experiment 4

Repeating the maneuvering flight with a 10 m deadband, the total number of samples gen-

erated was 5738, of which 2132 were in the close zone and 3606 in the far one. The training

set consisted of 4000 points and the test set of 1738 points.

The fast classifier yielded an average error of 0.1944 for this case and the slow one an error

of 0.0990.

Experiment Number 5
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The purposeof this experiment wasto checkthe classifier'sresponseto motion consisting
of stricly lateral maneuvers.Suchmaneuverspresentno dangerof collision, and shouldbe
classifiedas safe. Training wasperformedon the datasetof experiment 3. The test data
consistedof points, all representinga lateral maneuver,at a distanceof 75m from the wall.

The fast algorithm producedan averageclassificationerror of 0.0435while for the slow one
the error was 0.0570. This showsthat the classificationmethods are reliable in the sense

that they do not producea substantial falsealarm, and that both classifiersperform well in
non-ambiguoussituations.

Changing the grid

Reducingthe horizontal and the vertical distancebetweengrid points from 3 to 2 pixels has
causedthe fast method to producelessaccurateresults. Increasingthis distanceto 4 pixels
reducedthe error, but increasingit to 5 increasedit again. (For instance,the averageerror
producedby the fast method for experiment4 increasedfrom 0.1944to 0.2382when the
distancewas reducedfrom 3 to 2 pixels. The averageerror was0.1655for a distance of 4
pixels and 0.1740for a distanceof 5 pixels). However,the performanceof the slowmethod,
which is moreaccurate,did not follow the sametrend (the averageerror for a grid distance
of 4 pixels was0.1584,higher than the valueof 0.0990obtained for a distanceof 3 pixels).
We concludethat the optimal distancebetweengrid points was3 for our experiment.

5 Conclusion

We have presented a method for obstacle detection from optical flow information employing

two recently proposed classifiers. It is based on the local divergence of the optical flow in

the image plane, which is inversely proportional to the time to collision. The input to the

classifiers consists of binary pattern vectors, whose components are the signs of the first

spatial and temporal derivatives of the light intensity at several points in the neighborhood

of a given image point. The classifiers, detailed in [17] and [18], employ high-dimensional

sparse binary internal representations, and either Rosenblatt or Hebbian learning of the

class assignment. Performance was tested by several scenario simulations, including direct

approach, maneuvering approach and strictly lateral motion. The rate of success for each of

these cases was over 90 percent.
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